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Abstract 

Background: Impaired consciousness is common in intensive care unit (ICU) patients, and an individual’s degree of 
consciousness is crucial to determining their care and prognosis. However, there are no methods that continuously 
monitor consciousness and alert clinicians to changes. We investigated the use of physiological signals collected in 
the ICU to classify levels of consciousness in critically ill patients.

Methods: We studied 61 patients with subarachnoid hemorrhage (SAH) and 178 patients with intracerebral hemor-
rhage (ICH) from the neurological ICU at Columbia University Medical Center in a retrospective observational study 
of prospectively collected data. The level of consciousness was determined on the basis of neurological examination 
and mapped to comatose, vegetative state or unresponsive wakefulness syndrome (VS/UWS), minimally conscious 
minus state (MCS−), and command following. For each physiological signal, we extracted time-series features and 
performed classification using extreme gradient boosting on multiple clinically relevant tasks across subsets of 
physiological signals. We applied this approach independently on both SAH and ICH patient groups for three sets of 
variables: (1) a minimal set common to most hospital patients (e.g., heart rate), (2) variables available in most ICUs (e.g., 
body temperature), and (3) an extended set recorded mainly in neurological ICUs (absent for the ICH patient group; 
e.g., brain temperature).

Results: On the commonly performed classification task of VS/UWS versus MCS−, we achieved an area under the 
receiver operating characteristic curve (AUROC) in the SAH patient group of 0.72 (sensitivity 82%, specificity 57%; 95% 
confidence interval [CI] 0.63–0.81) using the extended set, 0.69 (sensitivity 83%, specificity 51%; 95% CI 0.59–0.78) on 
the variable set available in most ICUs, and 0.69 (sensitivity 56%, specificity 78%; 95% CI 0.60–0.78) on the minimal set. 
In the ICH patient group, AUROC was 0.64 (sensitivity 56%, specificity 65%; 95% CI 0.55–0.74) using the minimal set 
and 0.61 (sensitivity 50%, specificity 80%; 95% CI 0.51–0.71) using the variables available in most ICUs.

Conclusions: We find that physiological signals can be used to classify states of consciousness for patients in the ICU. 
Building on this with intraday assessments and increasing sensitivity and specificity may enable alarm systems that 
alert physicians to changes in consciousness and frequent monitoring of consciousness throughout the day, both of 
which may improve patient care and outcomes.
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Introduction
Treating intensive care unit (ICU) patients is challeng-
ing, as it requires high-stakes decisions to be made in 
complex and time-constrained environments [1, 2]. As 
part of patient care, the function of organ systems are 
monitored to guide treatments and interventions that 
must be administered quickly. In current clinical prac-
tice, several techniques and systems are already in place 
that continuously monitor function in organs such as the 
lungs [3, 4] and the heart [5–7]. To monitor brain func-
tion, however, clinicians rely on behavioral assessments. 
Some examples of these assessments are the Glasgow 
Coma Scale (GCS) [8], the Full Outline of Unresponsive-
ness (FOUR) [9], command following scale [10], and the 
Coma Recovery Scale–Revised (CRS-R) [11]. The most 
accurate of these assessments, the CRS-R, is performed 
infrequently (typically once a day); when it is used, it is 
time consuming and thus does not provide the regular 
insights available for other aspects of patient physiology. 
Further, repeated assessments within a short time frame 
are needed to reduce misdiagnosis because daily assess-
ments provide only a brief window into consciousness, 
which can fluctuate throughout the day [12, 13]. Prior 
work found that such fluctuations are associated with 
worse outcomes (death, disability) at 3 months after sub-
arachnoid hemorrhage (SAH) [14]. Thus, a patient’s state 
of consciousness is a major factor that guides patient 
care, intervention, and prognosis [8].

Given the difficulty involved in assessing consciousness 
using behavioral methods [15], alternative approaches 
have been explored. Electroencephalogram (EEG) allows 
for continuous measurement at the bedside, and previ-
ous research has shown that bedside EEG features corre-
late with the level of consciousness in a population with 
SAH [10]. However, continuous bedside EEG is only 
available in a select number of ICUs, and the measures 
investigated, to date, are still experimental. Other forms 
of brain monitoring such as functional EEG (fEEG) and 
functional magnetic resonance imaging (fMRI) have 
been used to test for consciousness directly by using 
mental (motor or spatial) imagery tasks [16–19] or 
local–global paradigms [20, 21], but these require patient 
participation, can only be performed intermittently, and 
are experimental and thus are not well suited to serve 
as alarm triggers. Motion sensing, by using wearable 
devices placed on all extremities, has been investigated 
for detecting neurological states but performs best on 

patients who are less impaired and requires additional 
sensors beyond those that are used clinically [22].

Given the limitations of prior methods for assessing 
consciousness, there is a critical need to develop tools 
to provide more frequent assessments of conscious-
ness. Although physiological signals have not been 
extensively examined as a means to continually moni-
tor consciousness, prior work has shown that time lags 
between physiological signals may be correlated with 
states of consciousness [23]. That work showed that the 
time lag between correlated variables (such as intracra-
nial pressure [ICP] and brain oxygenation) was delayed 
in patients with SAH who had impaired consciousness 
compared with those with intact consciousness. In this 
work, we leverage the large volumes of physiological 
data collected in the ICU and test the hypothesis that 
physiologic measures routinely collected in the hospi-
tal setting closely track behavioral assessments and can 
be used to classify states of consciousness. Although 
we begin by showing such signals can be used to clas-
sify daily behavioral assessments, ultimately, our use of 
routinely collected physiological data may enable con-
tinuous insights into states of consciousness between 
assessments.

Methods
Dataset
We used data collected prospectively from all patients 
with poor-grade aneurysmal SAH who underwent 
invasive brain monitoring and were admitted between 
2006 and 2013 and all patients with spontaneous non-
traumatic intracerebral hemorrhage (ICH) who were 
admitted between 2009 and 2017 to the neurologi-
cal ICU (neuro-ICU) at Columbia University Medi-
cal Center. The data consist of physiological signals 
that are continuously recorded during each patient’s 
ICU stay, along with daily neurological examinations 
that assess each patient’s degree of consciousness. 
The study design was that of a retrospective analysis 
of prospectively collected data. Patients were included 
if (1) they had physiological signals recorded and 
(2) they had behavioral assessments performed and 
recorded. Patients were excluded if (1) they were under 
18 years of age, (2) they were pregnant, or (3) they or 
their family did not consent to participate in the study. 
Patients provided informed consent when they were 
able to do so. Otherwise, a health care proxy or legally 
authorized representative did so. When there was no 
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designated health care proxy or legally authorized 
representative and the patient was unable to provide 
informed consent, they were enrolled under a waiver 
of consent as long as a family member did not object. 
If a patient regained consciousness later, they provided 
consent or declined participation. The data used were 
collected as part of a study approved by the Columbia 
University Institutional Review Board (approval num-
bers AAA5384 and AAAD4775).

Physiological Signals
The continuously recorded signals include respira-
tory signals (respiratory rate  [RR], end-tidal carbon 
dioxide  [CO2EX], and blood oxygen level [SPO2%]), 
cardiovascular signals (heart rate [HR] and mean arte-
rial pressure  [MAP]), brain signals (brain tempera-
ture  [BrT], ICP, and brain tissue oxygenation  [PbtO2]), 
and body temperature (TMP). All physiological signals 
were recorded at a sampling frequency of 5 s by using a 
high-resolution acquisition system (BedmasterEX; Excel 
Medical Electronics Inc) from General Electric Solar 
8000i monitors that was inserted into a Microsoft SQL 
database (see Supplemental Table 3, Supplemental file 2 
for monitoring devices for all physiological signals) [24, 
25]. Because of differences in etiology, treatment plans, 
and monitoring, each patient may have different subsets 
of these variables recorded at varying times through-
out their ICU stay, leading to missing variables across 
patients and missing instances within variables (see Sup-
plemental Table  4, Supplemental file 2 for missing data 
percentages).

Behavioral Assessments
Daily neurological examinations with behavioral assess-
ments of consciousness were performed during morning 
rounds between 8 a.m. and 11 a.m. by attending physi-
cians with sedation removed about an hour before each 
examination (when possible). The assessment scores were 
assigned retrospectively via chart review of the neuro-
logical examination and were validated in a prior study 
that examined the utility of bedside EEG features for 
predicting behavioral states [10]. The behavioral assess-
ment mapped consciousness into six behavioral states: 
comatose, 0 (no response to stimulation); arousable to 
noxious stimuli, 1 (eyes open); arousable to verbal stim-
uli, 2; spontaneous eye-opening, 3; follows simple (one 
and two-step) commands, 4; and follows complex (three-
step contralateral localization) commands, 5. We fur-
ther group the scores into clinically relevant categories: 
comatose (coma), 0; vegetative state (VS) or unresponsive 
wakefulness syndrome (UWS), 1; minimally conscious 
state minus (MCS−), 2 or 3; and command follow-
ing (CF), 4 or 5. Additionally, we create a noncommand 

following (non-CF) group with the coma, UWS/VS, and 
MCS− categories.

Data Processing
To preprocess the physiological signals, we first resampled 
the signals to nonoverlapping intervals of 1 min (consist-
ent with prior work on this dataset [23, 24]), imputed miss-
ing data within each signal by using the Fourier Lagged 
k-nearest neighbors imputation [26], and then filtered 
outliers from each signal based on clinically recommended 
ranges (as in prior work on this dataset [24, 25]; see Sup-
plemental Table 3, Supplemental file 2, for the filter ranges 
to remove outliers for each physiological signal). Note that 
imputation is performed separately for each patient, and 
we do not impute signals that are completely missing (see 
Supplemental file 1). Sedation is usually removed about 
an hour before each neurological examination, so we use 
physiological signals recorded before that time. We do this 
because most ICU patients are sedated, and using physi-
ological signals recorded after removal of sedation would 
limit when our model can be used for classification. We 
use physiological signals from 60 to 200  min before an 
assessment because this window is large enough for fea-
ture extraction. We preliminarily tested window sizes of 1 
to 3 h (starting at 60 min prior to assessment) on the task 
of VS/UWS versus MCS− task (using the proposed classi-
fication pipeline) and found 60–200 to perform best. If all 
variables were missing for more than 80% of that time win-
dow before an assessment, we excluded that assessment 
from the study (see Supplemental Table 4 in Supplemen-
tal file 2, which gives the percentages of variables missing 
after extracting time windows across all assessments). All 
code used for data processing and experiments is shared in 
our GitHub repository: https:// github. com/ health- ai- lab/ 
consc iousn ess- class ifica tion.

Feature Extraction
After filtering out outliers from each signal, we then 
removed high-frequency noise from each signal in the 
extracted time window using a discrete wavelet trans-
form (DWT) (level 2 DWT with a Daubechies 4 wave-
let). After the DWT is applied, we computed features 
using the entire extracted time window for each signal 
(i.e., mapping each 60–200-min window to one set of fea-
tures) by using a set of time-series measures. We selected 
16 different candidate features (see Supplemental Table 1, 
Supplemental file 2, which list all features) across both 
complexity and temporal domains.

Classification Framework
To perform classification, we used the XGBoost imple-
mentation of gradient boosted trees [27], which trains 
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an ensemble of multiple weak learners (usually decision 
trees) sequentially to learn the errors of the previous 
models and then combines them to form a classification 
model. We chose this approach because an interpretable 
model is vital for this clinical application, and XGBoost is 
capable of learning from data where different features are 
present for different data samples. In our case, time win-
dows may not have all physiological variables recorded 
(see Fig. 1b), and subsequently, only a subset of features 
will be present. Due to the differences in both data avail-
ability and disease severity, we perform classification on 
SAH and ICH patient groups separately.

Model Training and Evaluation
We explore model performance under a nested cross-
validation setting where we leave one patient out (LOPO) 
from each training round to evaluate our method without 
any training data from the test patient. During training, 
we performed hyperparameter tuning (see Supplemen-
tal file 1), feature selection (see Supplemental file 1), and 
rebalanced the data via a cost reweighting approach [28] 
by adding a positive weight (ratio of larger to smaller class 
sizes) to the samples in the smaller class, which penal-
izes its misclassification during training. Note that in 
each LOPO round, we train using only physiological sig-
nals measured for the held-out test patient because we 
want to evaluate using the same set of features. Figure 2 
shows an overview of our classification framework for the 
LOPO scheme. We evaluated classification performance 
using multiple methods to capture various facets of per-
formance, including: area under the precision recall curve 
(AUPRC), receiver operating characteristic (ROC) curves, 
area under the ROC curve (AUROC) with sensitivity and 

Fig. 1 A Illustration of the physiological signals used in this study 
and related variable subsets; B Bar graph of the percentage of vari-
ables recorded for assessments in each patient group. Note that a 
signal is considered present when it is measured for at least 80% of 
the time window. SAH subarachnoid hemorrhage, ICH intracerebral 
hemorrhage, ICU intensive care unit, SPO2% blood oxygen level, HR 
heart rate, RR respiratory rate, MAP mean arterial pressure, CO2EX 
end-tidal carbon dioxide, TMP body temperature, ICP intracranial 
blood pressure, PbtO2 brain tissue oxygenation, and BrT brain tem-
perature.

Fig. 2 Classification framework using leave one patient out. (1) Leave 
one patient out (LOPO) as test set and train on the remaining data. (2) 
Perform 5-fold cross validation using train data to select hyperparam-
eters including gamma, minimum child weight, maximum depth, 
and learning rate. (3) Use entire train data with learned hyperparam-
eters to re-train the model. (4) Evaluate the held-out patient to obtain 
prediction probabilities. (5) Perform the same loop for K rounds. After 
K rounds, calculate the area under the receiver operating curve using 
K predicted probabilities. Note that the feature selection step is not 
shown in this figure.



specificity at the operating point of the ROC curve (i.e., 
the point closest to the [0, 1] point) using Youden’s J sta-
tistic, confusion matrices (see Supplemental File 2, Sup-
plemental Figs. 2 and 3), and accuracy (see Supplemental 
File 2, Supplemental Table 7). For each AUROC value, we 
report the 95% confidence interval (CI) using the DeLong 
approach [29]. Additionally, we provide information 
about model calibration (see Supplemental file 1 and Sup-
plemental Fig. 1 in Supplemental file 2) using the LOW-
ESS calibration curve, the Integrated Calibration Index 
[30], and the maximum absolute difference between the 
predicted and observed probability ( Emax ) [31].

Physiological Signal Feature Importance
To understand how each signal contributes to overall 
classification accuracy, we examined physiological sig-
nal feature importance using the top k important fea-
tures with k = 5. Given our LOPO approach and the 
differences in signals that are measured for each patient, 
we define a measure of signal relevance to capture each 
signal’s impact on classification. This measure is modi-
fied from the approach introduced in Claassen et  al. 
[24], focused on finding common causal relationships in 
which patients have different signals, measured to our 
case, in which different features are used in each training 
round. Signal relevance is defined as the ratio between 
the number of times a signal appears in the top k impor-
tant features to the total number of times it was used in 
a training across all rounds. For example, if HR is meas-
ured in all patients but appeared in the top 5 features 30% 
of the time, it would have a relevance of 0.3. Note that 
we count each signal once regardless of how many times 
its features appeared in the top 5 important features for 
each round. For example, if the mean and skew of HR 
both appear in the top 5 important features for a training 
round, HR as a signal is only counted once. In general, we 
find that the signal relevance scores for most physiologi-
cal signals vary across classification tasks, variable sub-
sets, and patient populations. See Supplemental Table 8 
(Supplemental File 2) for results.

Experiments
We aimed to test whether continuously recorded physi-
ological data can be used to classify levels of conscious-
ness. As some variables are specific to the neuro-ICU, 
and assessing consciousness is important for all hospital 
patients, we conducted experiments with three subsets of 
variables as shown in Fig. 1a: variables collected for most 
hospital patients (hospital), variables collected mainly in 
ICUs (ICU), and variables specific to neuro-ICUs (neuro-
ICU). The neuro-ICU subset contains both the ICU 
and hospital subsets, and similarly, the ICU subset also 

contains the hospital subset. The hospital subset includes 
HR, RR, and SPO2%. The ICU subset further includes 
variables that are recorded in a range of ICUs regardless 
of specialization (e.g., cardiac or surgical): MAP, TMP, 
and CO2EX. Finally, the neuro-ICU subset includes vari-
ables that are not common to other ICUs but that may 
be important for assessing neurological status. In prior 
work, we found that correlations among brain-related 
variables have longer time lags in patients with SAH with 
lower versus higher levels of consciousness [23]. Thus, 
we included the variables found to be important in that 
study: ICP, BrT, and PbtO2. Including the hospital and 
ICU subsets helps to understand what performance may 
be achievable without the specialized data available only 
in neuro-ICUs. Figure 1b shows the percentage of assess-
ments from the patients with SAH and patients with 
ICH for whom each variable is recorded. Note that the 
ICH patient group does not have variables specific to the 
neuro-ICU due to the difference in severity and treat-
ment plans for the two groups; hence, no experiments are 
performed using the neuro-ICU subset.

With these three subsets, we also have three classifica-
tion tasks selected based on clinical relevance: (1) clas-
sification between VS/UWS and MCS− ; (2) classification 
between (Coma, VS/UWS) and (MCS− , CF); and (3) 
classification between non-CF and CF. In task 1, we clas-
sified between VS/UWS and MCS− because patients who 
are MCS− have some evidence of being aware of them-
selves and their environment compared with patients 
who are VS/UWS. Additionally, this is a common task 
performed in the classification of consciousness litera-
ture [20, 21]. Task 2 is relevant to prognosis, as patients 
with MCS− or higher have a better chance of recovering 
consciousness. For task 3, the classification of CF tells 
us about patients who can process information and are 
aware of their environment through verbal or nonverbal 
behavior [15]. Although this problem can be naturally 
framed as a multiclass classification problem, this would 
require a larger set of training data. Thus, we use the clin-
ically relevant binary tasks found in prior work.

Results
We identified 61 patients with SAH and 180 patients with 
ICH that met the inclusion criteria of having both physi-
ological signals and recorded behavioral assessments. 
In both patient groups, the number of assessments per 
patient is not equally distributed. In total, there are 1,815 
assessments of consciousness (SAH: 267, ICH: 1,548) 
with an average of 7.53 assessments per patient (SAH: 
4.38 ± 2.86, ICH: 8.6 ± 2.89). The minimum number 
of assessments per patient (SAH: 1, ICH: 2), maximum 
number of assessments (SAH: 14, ICH: 12), and inter-
quartile range (SAH: 4.0, ICH: 5.0) also varied by group. 



After data processing and extracting time windows, 231 
assessments from 61 patients with SAH and 698 assess-
ments from 178 patients with ICH remained for further 
analysis. See Table  1 for characteristics of the studied 
population. There were more excluded assessments for 
patients with ICH due to the lack of recorded physi-
ological signals after patients were discharged from the 
neuro-ICU. This breaks down into the following num-
ber of assessments for the predefined clinical categories: 
Coma (SAH: 47, ICH: 163); VS/UWS (SAH: 67, ICH: 55); 
MCS− (SAH: 54, ICH: 73); and CF (SAH: 63, ICH: 407). 
Figure 3 illustrates the distribution of behavioral scores, 
with a higher proportion of assessments of patients with 
ICH being in the CF category compared to the SAH 
group, where scores are more evenly distributed. See 
Supplemental Table 2 in Supplemental file 2 for the total 
number of samples in each of the classification tasks 
and across the variable subsets. For all experiments, we 
present classification performance in Fig. 4 with a ROC 
curve.

VS/UWS Versus MCS‑
In the SAH patient group, we achieved an AUROC of 
0.72 (sensitivity: 82%, specificity: 57%; 95% CI 0.63–0.81) 
on the neuro-ICU subset. AUROC for this task using 
the ICU subset is 0.69 (sensitivity: 85%, specificity: 51%; 
95% CI 0.59–0.78), while performance on the hospi-
tal subset is similar with an AUROC of 0.69 (sensitivity: 
56%, specificity: 78%; 95% CI 0.60–0.78). Using AUPRC, 
we see improvements over the baseline of 0.45, with the 
best score of 0.72 on the neuro-ICU subset, 0.69 on the 
ICU subset, then 0.62 on the hospital subset. For patients 
with ICH, the best performance was obtained using the 
hospital subset with an AUROC of 0.64 (sensitivity: 66%, 
specificity: 65%; 95% CI 0.55–0.74), while the ICU subset 
had an AUROC of 0.61 (sensitivity: 77%, specificity: 55%; 
95% CI 0.51–0.71). For the AUPRC, the best performance 
of 0.55 was on the hospital subset compared to 0.52 on 
the ICU subset, with both being improvements over the 
baseline of 0.43.

(Coma, VS/UWS) Versus (MCS‑, CF)
For this task, the AUROC increased marginally when 
we used more variables from the hospital subset with an 
AUROC of 0.61 (sensitivity: 56%, specificity: 65%; 95% CI 
0.54–0.68) to 0.62 (sensitivity: 50%, specificity: 80%; 95% 
CI 0.55–0.69) on the ICU subset, and 0.62 (sensitivity: 
72%, specificity: 50%; 95% CI 0.55–0.69) on the neuro-
ICU subset for the SAH patient group. The AUPRC 
improved from the 0.49 baseline across all data subsets 
with scores of 0.59, 0.65, and 0.62 on the hospital, ICU, 
and neuro-ICU subsets. On the ICH patient group, the 
hospital subset had an AUROC of 0.75 (sensitivity: 79%, 
specificity: 63%; 95% CI 0.71–0.79) compared with 0.76 
(sensitivity: 70%, specificity: 75%; 95% CI 0.72–0.80) on 
the ICU subset. The hospital subset had a higher AUPRC 

Table 1 Demographic and  clinical characteristics 
for patients studied

Data are shown as count (%) or median (25th percentile–75th percentile)

ICH, intracerebral hemorrhage, SAH, subarachnoid hemorrhage
a NA means not available
b ICH location is not present in patients with SAH and absent in 21 patients with 
ICH

Characteristics SAH (n = 61) ICH (n = 178)

Demographics

 Age 54 (45–63) 68 (56–77)

 Female sex 44 (72) 73 (41)

Clinical/radiographic

 Glasgow coma scale 7 (4–9) 12 (7–15)

 Acute physiology and chronic health 
evaluation II score

21 (18–26) 15 (9–20)

 ICH score NAa 2 (1–3)

 Hunt-Hess scale on admission 4 (4–5) NA

 Delayed cerebral ischemia 21 (34) –

 Intraventricular hemorrhage sum 
score

4.0 (1.0–7.0) NA

 Global cerebral edema 44 (72) –

 Fischer score 3.00 (3.00–3.00) NA

ICH  locationb

 Deep (thalamus/basal ganglia) – 83 (53)

 Lobar – 50 (32)

 Infratentorial – 24 (15)

External ventricular drain placement 52 (85) 37 (21)

Clipping 52 (85) 0 (0)

Coiling 12 (20) 0 (0)

Invasive intracranial monitoring 61 22

Fig. 3 Bar graph showing the percentages of grouped behavioral 
scores for patients with SAH and ICH. SAH subarachnoid hemorrhage, 
ICH intracerebral hemorrhage, CF command following, MCS- mini-
mally conscious state minus, and VS/UWS vegetative state/unrespon-
sive wakefulness syndrome



score of 0.60 compared with 0.57 on the ICU subset 
which are both improvements over the baseline score of 
0.31.

Non‑CF Versus CF
In the SAH patient group, we observed the highest 
AUROCs of 0.64 (sensitivity: 65%, specificity: 64%; 95% 
CI 0.56–0.72) on the hospital subset and 0.64 (sensitivity: 
84%, specificity: 43%; 95% CI 0.56–0.72) on the neuro-
ICU subset. The ICU subset had an AUROC of 0.60 (sen-
sitivity: 89%, specificity: 31%; 95% CI 0.51–0.68). The best 
AUPRC was on the hospital subset with a score of 0.40 
compared to 0.34 on the ICU and 0.38 on the neuro-ICU 
subset. All scores achieved better performance than the 
baseline of 0.27. For patients with ICH, we found that 
results were similar to those of the prior task, with the 

hospital subset having an AUROC of 0.76 (sensitivity: 
78%, specificity: 63%; 95% CI 0.72–0.79) compared to the 
AUROC of 0.75 (sensitivity: 76%, specificity: 66%; 95% CI 
0.72–0.79) on the ICU subset. Both subsets improve over 
the baseline of 0.42 with AUPRC of 0.69 and 0.65 on the 
hospital and ICU subsets.

Discussion
Methods that can automatically assess a patient’s level 
of consciousness could have a significant impact on 
patient care, reduce demands on a clinician’s time, 
and facilitate future research into why conscious-
ness changes. Although previous research has exam-
ined the use of methods such as EEG, fEEG, and fMRI 
for assessing consciousness [32–34], there are major 
limitations to their use in providing the continuous 

Fig. 4 A ROC curves showing performance for each classification task and physiological data subset on the subarachnoid hemorrhage patient 
group for LOPO; B ROC curves showing performance for each classification task and physiological data subset on the intracerebral hemorrhage 
patient group for LOPO. VS/UWS vegetative state/unresponsive wakefulness syndrome, MCS- minimally conscious state minus, CF command fol-
lowing, ICU intensive care unit, Neuro-ICU neurological intensive care unit, and LOPO leave one patient out



measurements needed for effective brain monitoring. 
Our results across classification tasks showed that 
information from physiological signals may be asso-
ciated with behavioral states of consciousness at the 
time of assessments. Further, we also examined how 
performance changes on the basis of which variables 
are used as we tested classification using variable 
subsets which included the minimal set of variables 
recorded for most hospital patients, variables meas-
ured in most ICUs, and an extended set recorded in 
neuro-ICUs. The crucial distinction between VS/
UWS and MCS− was made by our approach, as evi-
denced by the AUROC of 0.72 on the SAH patient 
group, which compares favorably with prior stud-
ies that use technically challenging methods such as 
fEEG and fMRI (AUROC of 0.78 [21] and accuracy 
of at least 80% [35]). Although we achieved a lower 
AUROC value, our work is promising as we leverage 
continuously recorded physiological data from rou-
tinely used sensors, rather than requiring new sensors 
such as accelerometers [22]. Unlike other methods, 
our approach could potentially be used to provide 
more frequent and automated indicator for conscious-
ness without needing to move patients, disrupt care, 
or invest in new technologies. Further, this allows for 
regular insights into when or if the level of conscious-
ness is fluctuating which has been linked to worse out-
comes (death, disability) at 3 months after SAH [14].

For all configurations, we achieved higher AUROC 
performance on the ICH patient group except on the 
first classification task (VS/UWS vs. MCS−) in which 
we attained a higher AUROC on the SAH patient group. 
This can be attributed to the greater likelihood that in 
the first task the SAH patient group has invasive moni-
toring which leads to more variables (and hence more 
information) being available for classification com-
pared with the ICH patient group, whereas overall more 
assessments were available for the ICH group. On the 
second task (coma, VS/UWS vs. MCS−, CF) the high-
est AUROC on the ICH patient group is higher than 
that on ICH with our first task. This difference is likely 
due to the larger amount of training data available with 
the inclusion of CF labels (see Fig. 3) compared with the 
first task. This is even more apparent when considering 
our third task (non-CF vs. CF). In general, ICU vari-
ables are absent for many ICH assessments (see Fig. 1b 
and Supplemental Table 4 in Supplemental file 2). Thus, 
we did not expect to see a significant performance dif-
ference between the hospital and the ICU subset for all 
classification tasks. In the SAH patient group, there was 
an increase in AUROC from the hospital to the neuro-
ICU subset across all classification tasks suggesting 
that the inclusion of additional variables helped capture 

more information that led to increases in predictive 
performance. On the AUPRC, we observe that for both 
the ICH and SAH patient groups, we consistently have 
scores higher than the baseline for each classification 
task.

Consciousness and Physiological Signals
Our use of physiological signals expands previous 
research that focuses on patient state monitoring using 
the signals available in the ICU. This includes work in 
classifying levels of sedation [36, 37], predicting car-
diac arrests [38], predicting the onset of sepsis [39, 40], 
and automating the measurement of pain intensity [41, 
42] in ICUs. Like our methodology, these works either 
extract features from physiological signals or use them 
in their raw formats with a machine learning model to 
predict patient states that may assist clinicians in treat-
ing patients. Physiological signals have also been used for 
patient monitoring of consciousness in the ICU by asso-
ciating changes in signals with changes in patient state. 
For example, a reduction in HR variability (HRV) is posi-
tively associated with a deepening coma state [43] and a 
higher complexity index value (HRV complexity score) 
in MCS patients compared with VS/UWS patients [44]. 
Additionally, other autonomic cardiac markers such as 
cardiac cycle have shown a significant phase shift in MCS 
patients compared with VS/UWS patients induced by 
global regularities in the local–global oddball paradigm 
[45]. Although our study does not focus on capturing 
changes in physiological signals associated with changes 
in consciousness levels (due to limited availability of 
ground truth data) these works show that such relation-
ships may exist between the physiological variables we 
tested and different states of consciousness.

Human Evaluation
Given our reliance on labeled assessments as ground 
truth, we discuss our results in context of how accurate 
clinicians are at classifying patients’ states of conscious-
ness. This is important because if we can achieve com-
parable accuracy to clinicians, we can potentially reduce 
the time burden of performing assessments. The primary 
metrics for human assessment of consciousness focus 
on how often individuals agree, using interrater reliabil-
ity and interdiagnostic agreement (measured using the 
kappa score K  ) on behavioral assessments such as the 
GCS [8], the FOUR [9], CF scale [10], and the CRS-R [11]. 
These studies use labeled data collected from a diverse set 
of clinicians (including neurologists, neuropsychologists, 
nurses, and other ICU staff) in an ICU setting. Overall, 
kappa scores ranged from 0.60–0.79 [11, 46–48] on the 
CRS-R, 0.68–0.83 [9, 49, 50] on the GCS, and 0.75–0.85 
[9, 49, 50] on the FOUR scales. These scores indicate that 



clinicians have moderate to strong agreement in catego-
rizing patients as having the same state of consciousness 
(e.g., MCS) or assigning the same behavioral assessment 
scores. Although a direct comparison between perfor-
mance metrics (AUROC and kappa score) is not possi-
ble, prior work has derived a mathematical relationship 
between the kappa score and ROC curve1 [51]. Hence, 
our results on the various classification tasks, variable 
subsets, and patient groups show that we achieve equally 
good discriminative performance in classifying patients 
into states of consciousness.

Limitations
Although our work serves as a first step toward investi-
gating the use of physiological signals to correlate behav-
ioral states of consciousness, there are some limitations. 
First, although other works rely on well-studied features 
like EEG biomarkers [20, 21], our approach examined 
a range of time-series measures for classification. We 
found that across both classification tasks and patient 
groups, different features were selected for classification 
(see Supplemental file 1). Hence, it remains to be deter-
mined what features may be broadly informative across 
tasks and ICU types. Second, we faced a high degree of 
missing physiological signals for both the SAH and ICH 
patient groups when performing classification. Missing-
ness varied substantially by signal, with some variables 
having high rates of missingness, TMP (SAH: 43%, ICH: 
74%), others differing significantly by patient group, ICP 
(SAH: 7%, ICH: 88%), and finally, some variables hav-
ing very low missingness (SPO2% SAH: 7%, ICH: 3%; 
HR SAH: 1%, ICH: 0%). We partly accounted for this by 
imputing missing values within signals (before extracting 
time windows) and using a model that can handle miss-
ing features with the LOPO cross-validation approach; 
however, this limits our ability to learn one general pre-
dictive model. Future work could examine other methods 
of learning shared information from patient data to bet-
ter learn a general model. Further, although our impu-
tation approach, Fourier Lagged k-nearest neighbors, 
has been previously validated on this data, it is a single 
imputation method and thus there may be variability in 
our results due to the imputation step. Third, we ana-
lyzed a limited number of patients and assessments. We 

accounted for this by using the LOPO cross-validation 
approach, which is best suited for cases with a limited 
number of samples and reported the AUROC (with con-
fidence intervals), AUPRC, and model calibration (see 
Supplemental file 1 and Supplemental Fig.  1 in Supple-
mental file 2 for results) to further show the reliability 
of our results on both patient groups. In the future, we 
plan to collect more data from other ICUs to increase 
the size of our datasets and further test generalizability. 
Fourth, we used signals from the 60 to 200 min prior to 
each assessment across all tasks and patient groups, with 
assessments occurring daily during the morning. Because 
current practice is to conduct assessments during morn-
ing rounds, we were not able to compare performance to 
assessments from other times of the day. However, future 
work is needed to determine whether there are differ-
ences related to circadian rhythms or other time of day 
effects. Similarly, it remains to determine what the opti-
mal window size is for each task, but this may be deter-
mined experimentally in the future with larger data sets. 
Lastly, the use of physiological signals enables continuous 
classification of consciousness, but we are limited by the 
availability of ground truth labels. Although our current 
approach can be used to perform classification at any 
time point, we only know if the classified states of con-
sciousness are correct at the time of behavioral assess-
ments. In our future work, we aim to expand the set of 
ground truth labels with more frequent assessment to 
capture fluctuations in consciousness. As assessments 
are labor intensive and involve the removal of sedation, 
it is infeasible to collect them at a high frequency, so 
future work may also involve using simulation for robust 
evaluation of classification and capturing fluctuations in 
consciousness.

Conclusions
In this study, we demonstrated that physiological signals 
may be associated with behavioral states of conscious-
ness. Although our work is preliminary, given our study 
limitations, it allows for further extensions to address 
these challenges and other works that similarly examine 
whether widely available physiological signals could serve 
as measurements that correlate with assessments of con-
sciousness. These measurements can form the basis of 
a clinical alarm system that alerts clinicians to possible 
changes in neurological status with high sensitivity and 
specificity, triggering a bedside assessment and further-
ing diagnostic studies for therapeutic interventions. We 
aim to extend this work beyond the neuro-ICU to other 
ICUs where patients have impaired consciousness.
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1 This relationship is defined as:

which outputs the kappa score (K) for a specified true positive (TP) and false 
positive, (FP) value on the ROC curve (with the simplified representation: 
TP = f (FP) ). Here P is the number of positive labels, N is the number of neg-
ative labels, P′ is the probability of being predicted as positive, and f  is the 
function that outputs true positive values for each false positive.

K =
TP − FP − P

′(1− 2N)

P − P′(1− 2N)
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