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Abstract
Background: Accurately identifying eating patterns, specifically the timing, frequency, and distribution of eating occasions 
(EOs), is important for assessing eating behaviors, especially for preventing and managing obesity and type 2 diabetes (T2D). 
However, existing methods to study EOs rely on self-report, which may be prone to misreporting and bias and has a high 
user burden. Therefore, objective methods are needed.

Methods: We aim to compare EO timing using objective and subjective methods. Participants self-reported EO with a 
smartphone app (self-report [SR]), wore the ActiGraph GT9X on their dominant wrist, and wore a continuous glucose 
monitor (CGM, Abbott Libre Pro) for 10 days. EOs were detected from wrist motion (WM) using a motion-based classifier 
and from CGM using a simulation-based system. We described EO timing and explored how timing identified with WM and 
CGM compares with SR.

Results: Participants (n = 39) were 59 ± 11 years old, mostly female (62%) and White (51%) with a body mass index (BMI) 
of 34.2 ± 4.7 kg/m2. All had prediabetes or moderately controlled T2D. The median time-of-day first EO (and interquartile 
range) for SR, WM, and CGM were 08:24 (07:00-09:59), 9:42 (07:46-12:26), and 06:55 (04:23-10:03), respectively. The 
median last EO for SR, WM, and CGM were 20:20 (16:50-21:42), 20:12 (18:30-21:41), and 21:43 (20:35-22:16), respectively. 
The overlap between SR and CGM was 55% to 80% of EO detected with tolerance periods of ±30, 60, and 120 minutes. 
The overlap between SR and WM was 52% to 65% EO detected with tolerance periods of ±30, 60, and 120 minutes.

Conclusion: The continuous glucose monitor and WM detected overlapping but not identical meals and may provide 
complementary information to self-reported EO.
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Introduction

Nearly, 40% of United States adults live with obesity,1 which 
is a leading risk factor for type 2 diabetes (T2D).2 Nearly, 
10% of the US population has T2D, and its prevalence is 
growing.3 While both conditions require individuals to per-
form daily self-management activities, patients experience 
barriers to successful self-management,4 and thus may not 
meet goals, such as target glycosylated hemoglobin (HbA1c). 
Eating patterns, such as the timing of meals, are a key modi-
fiable determinant of obesity and T2D.5-7 Understanding an 
individual’s eating timing is a crucial part of designing a tai-
lored intervention for treatment and prevention, as nutrition 
therapy must be individualized.8

The frequency of eating occasions (EOs) is positively 
associated with obesity in adults9 and meal timing may influ-
ence the risk of metabolic disease.6,9 Identifying the timing, 
frequency, and distribution of EO is thus important for 
assessing eating behaviors, especially when designing inter-
ventions for managing and preventing obesity and T2D, as 
much eating behavior is automatic.10 However, it is difficult 
to obtain large-scale data on meal times and frequency.

Currently, insight into EO timing comes mainly from self-
reported events. Short-term dietary assessment methods, 
such as dietary recalls and food records, ask individuals to 
report when EO occur.11 However, people often significantly 
misreport dietary intake,12 often failing to recall or forgetting 
to log EOs, or inaccurately indicating their timing.13 Self-
reported intake were found to underestimate intake by more 
than 20% in many comparisons to doubly labeled water.14 
Data omissions may be more likely for people with obesity,15 
suggesting an independent account of eating behavior is 
needed. Recently, there have been significant advances in the 
development of objective assessments, from continuous glu-
cose monitors (CGMs) and body-worn sensors.16 Driven by 
the need for meal identification in artificial pancreas sys-
tems, methods have been developed to identify an EO and 
estimate its carbohydrate content from CGM readings.17 
While such systems can identify meals automatically, they 
have been mainly developed for individuals with type 1 dia-
betes (T1D), where all insulin is exogenous and this informa-
tion can be included in the algorithm, and have not been 
widely tested in the T2D setting where endogenous insulin 
makes the task more challenging. Body-worn sensors use 
features, such as motion (of the wrist or head),18 audio (e.g., 
capturing chewing noises),19 or a combination of modalities 
to identify meal times and food type.20,21 In particular, wrist 
motion (WM) has been used in free-living studies to detect 
meal times and energy intake.22 However, body-worn sen-
sors have been assessed in general populations and have yet 
to be leveraged for identifying meal timings in individuals 
with obesity and pre-diabetes. In this work, we aim to 
describe eating patterns using self-report (SR), CGM, and 
WM-actigraphy methods for detecting EO timing in adults 
with obesity and pre-diabetes under free-living conditions.

Methods

Design

The data were collected as part of an ancillary study using a 
sub-group of participants in The Personal Diet Study (NCT: 
NCT03336411), a behavioral weight loss intervention.23,24 
Data were collected at baseline, prior to randomization and 
intervention initiation. Eligible participants were between 18 
and 80 years old, had a body mass index (BMI) of 27 to 50 kg/
m2, and had pre-diabetes or moderately controlled T2D 
(defined as an HbA1c ≤ 8.0% while managed with lifestyle 
alone or lifestyle plus metformin), but were otherwise healthy. 
Additional details regarding exclusion criteria have been 
reported elsewhere.23 This study was reviewed and approved 
for Human Subjects Research by the NYU Grossman School 
of Medicine Institutional Review Board (#17-00741). All par-
ticipants signed an informed consent prior to data collection.

Measurements

Eating patterns were assessed over 10 days using three meth-
ods. The first method was SR, where participants entered 
date- and time-stamped EO into the Personalized Nutrition 
Project (PNP) smartphone app. An EO included any food or 
drink (aside from water) greater than 0 kcals. Participants 
were instructed to log EOs in the PNP app in real-time. A 
member of the study team reviewed logged EOs every 1 to 2 
days, and any unusual EOs (e.g., 3:00 am) were verified by 
asking the participants. Concomitantly, participants were 
instructed to wear an ActiGraph watch (ActiGraph GT9X-BT; 
Pensacola, FL, USA) on their dominant hand to measure 
WM. Due to the limited daily battery life, participants were 
instructed to remove their ActiGraph and charge while sleep-
ing. Participants were also fitted with a CGM (Abbott 
Freestyle Libre Pro, Abbott Park, IL, USA) on their arm, 
which measured glucose throughout the study period. The 
CGM provides data at 15-minute intervals that represent the 
average glucose over the prior 15 minutes. The WM and 
CGM data were used to detect mealtimes as discussed below.

WM Meal Detection Methods

Eating occasions were identified from WM data by applying 
a two-stage neural network analysis developed in previous 
studies for the ActiGraph’s three-axis accelerometer and 
gyroscope data.25,26 Data were recorded at 60 Hz and downs-
ampled to 15 Hz for analysis. In the first stage of analysis, a 
sliding six-minute window is analyzed to calculate the local 
probability of eating P(Ew).25,26 This neural network uses 
three 1D convolution layers, a pooling layer and a dense 
layer. The window length and stride are 6 minutes and 15 
seconds. All model and window parameters were optimal 
choices according to the original work. In the second stage of 
analysis, the all-day sequence of P(Ew) is analyzed to calcu-
late the day-level probability of eating P(Ed).

25,26 This neural 
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network uses a single bidirectional RNN layer and a dense 
layer applied to each timestep simultaneously. By analyzing 
the entire day of data all at once, it can use context related to 
daily patterns of eating to improve detection performance. 
The day-level analysis helps reduce false positive detec-
tions.25,26 In detail, first the data is input to a window-based 
neural network with a window size of six minutes and a 
stride of 15 seconds. The network outputs a probability of 
eating P(Ew) ranging from 0 (unlikely any eating occurred 
during this time window) to 1 (very likely eating occurred). 
The sequence of P(Ew) is then downsampled to 0.01 Hz 
(about one sample per minute), which is sufficient for ana-
lyzing the daily pattern of eating. A second neural network 
takes as input a sequence of 850 P(Ew) values (approximately 
24 hours, padded with zeros for time in which no WM data 
are available) to calculate the daily probability of eating 
P(Ed). These output probabilities are then threshold at a 
value of 0.04 to identify times of eating throughout the day.

The classifiers were trained on data collected in previous 
studies,25,26 which ensured no leakage between training and 
test data. In the training data, 351 participants recorded WM 
for one day each and self-reported the start and end times of 
all meals and snacks (hence called EOs).26 In total, 4680 
hours of data containing 1063 eating episodes were used for 
training the classifiers.25 The window-based classifier alone 
detected 87% of eating episodes with 1.9 false positives per 
true positive (FP/TP) detection, while the daily pattern clas-
sifier improved the detection rate to 89% and reduced FP/TP 
to 1.5.25 Thus, the method has good sensitivity but detects 
numerous false positives, in part because non-eating is highly 
imbalanced with eating (approximately 20-1.2 total hours 
per day). Open-source software to run these classifiers on 
ActiGraph data is publicly available (https://cecas.clemson.
edu/ahoover/bite-counter/).

CGM Meal Detection Methods

The second approach to objectively determine mealtimes was 
simulation-based explanation (SBE),27 which: (1) uses simu-
lation to forecast blood glucose and finds when simulations 
diverge from observations (divergent point), (2) generates 
blood glucose forecasts based on varied meal configurations, 
and (3) identifies which, if any, meal explains the difference 
between forecast and actual BG (see Supplemental Figure 1).

To simulate meals, we used Glucose-Insulin Model 
(GIM), a differential equation-based physiological model of 
the glucose-insulin system that simulates glucose and insulin 
dynamics, and the effects of meals.28 Glucose-Insulin Model 
uses a forcing function strategy to learn parametric models 
representing different systems, such as glucose, insulin, and 
unit processes like glucose rate of appearance.

To begin, we continually update GIM using observed 
variables (eg, exogenous insulin) every minute and output 
predicted glucose. To find a divergence time t, we compute 

the mean difference between the recorded CGM values G 
and predicted glucose G′  over a time window ζ : 
| [ : ] [ : | .G t t G t t′ ζ ζ− − − >∅  If the difference is greater than 
our threshold ∅, that time is considered a divergent point. 
When a divergent point is found, we look backward in time 
for a meal that could explain it. We do this by generating 
predicted glucose values for varying meal configurations: 
mst  (meal start time), mc (meal size), and mdu (meal dura-
tion). Glucose-Insulin Model is used to simulate the effects 
of each of these meals. To find the meals that best explain the 
divergence, we compute the Euclidean distance between G′  

and G, i m
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, and select the meal with the 

smallest distance below a threshold ∈.
The original SBE was developed for individuals with T1D 

who use CGM and insulin pump therapy and wore activity 
monitors.27 The same method was applied in this study but in 
individuals with pre-diabetes or moderately controlled T2D, 
and who did not use activity monitors or exogenous insulin. 
Since these unmeasured factors can influence glucose, we can 
no longer expect every deviation to be due to a meal. Thus, the 
algorithm was modified as follows. First, we calculated the 
difference between G′  and G over a longer time range includ-
ing past the divergent point ( t max t m m*

st du= +( ) +, ∆ ). 
Second, we stored alternate meals below our threshold to 
allow backtracking if, as new data are collected, the accepted 
meal does not match observations. Finally, if the algorithm 
cannot find a meal that explains the difference between obser-
vations and predictions, we automatically move forward in 
time. See the Supplemental Material for parameters.

Statistical Analysis

Demographic variables were summarized as mean (stan-
dard deviation) for continuous variables and count (pro-
portion) for categorical variables. Five EO characterizations 
were examined: number of EO, first EO, last EO, 95% 
window eating, and eating midpoint. Specifically, for a 
participant at one day in one method, (1) the number of EO 
was defined as sum of all self-reported EO within a 24-hour 
period. Eating occasions within 15 minutes of each other 
were combined into a single EO. (2) The first EO was 
defined as the time of the participant’s first meal and (3) 
the last EO is the time of the participant’s last meal. (4) 
The 95% window eating is defined as the as the 95% inter-
val of all EOs entered in the PNP app, as previously 
defined.29,30 (5) The eating midpoint is the median time 
between the first EO and last EO. Pairwise Spearman’s 
correlation tests were conducted for these five EO charac-
terizations among SR, WM, and CGM, respectively. We 
also compared the timing of individual EOs identified by 
SR, WM, and CGM. Self-report meals are identified by 
start time, while CGM and WM identify start and end time. 

https://cecas.clemson.edu/ahoover/bite-counter/
https://cecas.clemson.edu/ahoover/bite-counter/
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Figure 1.  Study flowchart.

Table 1.  Baseline Characteristics.

Variable All (n = 39)

Age (years) 52 ± 11
Sex (% Female) 62
Hispanic (% non-Hispanic) 79
Race
  White (%) 51
  African American (%) 28
  Other (%) 21
Height (cm) 166.0 ± 9.6
Weight (kg) 94.0 ± 14.1
BMI (kg/m2) 34.2 ± 4.7
HbA1c (%) 5.9 ± 0.6

Data are reported as mean ± SD; race: “Other” includes Asian, Native 
Hawaiian, or Other Pacific Islander, American Indian, Alaska Native Asian, 
or unknown.
Abbreviations: BMI, body mass index; HbA1c, glycosylated hemoglobin.

Thus, if the start time of an SR EO is within an EO window 
identified by CGM or WM, we consider that a match. To 
compare CGM and WM, a match is an EO where the win-
dows overlap. Finally, given that SR timings may be noisy 
(eg, due to reporting a planned meal, or forgetting and log-
ging mid-meal or post-meal), we also examined how the 
methods correspond when allowing a tolerance window 
(eg, allowing a match if the times are within X minutes, for 
varying X). We tested tolerance windows of: ± 5, 10 15, 
30, 60, and 120 minutes.

Results

Characterization of Meal Timing

The flow of participants is presented in Figure 1 and par-
ticipant characteristics are presented in Table 1. As shown 
in Table 2, the CGM detected an earlier first EO and later 
last EO than other methods. The median first EO detected 
by CGM was approximately 1.5 hour before the first SR 
EO and approximately 3.0 hour before the median first 
WM EO. The median first EO detected by WM was within 
45 minutes of the median SR first EO. The last EO detected 
by SR and WM were very similar, while CGM identified a 
much later last EO. The CGM method detected the longest 
eating window, while WM detected the shortest. Examining 
pairwise correlations between mealtimes using Pearson’s 
correlations (Figure 2), we found significant positive cor-
relations between the first EO identified by SR and CGM 
(r = 0.534, P = .01), first EO identified by CGM and WM 
(r = 0.325, P = .004), and the eating midpoint identified 
by CGM and WM (r = 0.253, P = .03). There was also a 
negative correlation between the eating midpoint identi-
fied by SR and WM (r = −1.0, P < .0001).

Comparison of Meal Detection Methods

Table 3 reports the overlap between CGM and SR, WM, and 
SR, and CGM and WM for each tolerance period. With toler-
ance of ± 0, 5, and 10 minutes, less than 40% of EOs were 
identified by both WM and CGM. The overlap between SR 
and CGM was between 55% and 80% of EO detected with 
tolerance periods of ± 30, 60, 120 minutes. The overlap 
between SR and WM was between 52% and 65% EO 
detected with ± 30, 60, 120 minutes of tolerance periods. 
Furthermore, the overlap between WM and CGM was 
approximately 23% regardless of tolerance used. Finally, we 
examined the percentage of meals identified by all methods 
by analyzing matches on days for which all three modes 
were used. For tolerance levels from ± 0, 10 and 15 minutes, 
there were no matching meals identified by all methods. At 
30 minutes, 4% of SR meals were also found by CGM and 
WM, while 7% were found for tolerances of both 60 and 120 
minutes. Unfortunately, only one participant had an overlap 
of all three methods over three days.

Discussion

The purpose of this study was to compare subjective and objec-
tive assessment of EOs in free-living conditions using three 
methods for detecting meals. Ultimately, we aim to minimize 
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Table 2.  Eating Patterns Measured by SR, WM, and CGM.

Variable SR WM CGM

EO (#/day) 3 (2-4) 4 (3-6) 7 (5-10)
First EO, (hh: mm) 08:24 (07:00-09:59) 9:42 (07:46-12:26) 06:55 (04:23-10:03)
Last EO, (hh: mm) 20:20 (16:50-21:42) 20:12 (18:30-21:41) 21:43 (20:35-22:16)
95% eating window, (h, min) 10:34 (6:49-12:35) 9:08 (6:42-12:41) 13:10 (9:23-15:55)
Eating midpoint, (hh: mm) 13:34 (11:48-15:39) 15:32 (12:53-17:33) 14:06 (11:54-16:19)

Data are reported as median and (interquartile range) for meal start times.
Abbreviations: SR, self-report; WM, wrist motion; CGM, continuous glucose monitor; EO, eating occasion.

Figure 2.  Pairwise correlation between SR, CGM and WM.
Abbreviations: SR, self-report; CGM, continuous glucose monitor; WM, 
wrist motion; EO, eating occasion; EO_First, first eating occasion of the 
day; EO_Last, last eating occasion of the day; EO_95WD, eating window; 
Midpoint, eating midpoint.
*P < .05.

the errors associated with self-reported dietary intake data by 
adding objective measures. Accurate determination of EO is 
critical for better understanding the relationship between eating 
patterns and co-morbid conditions (e.g., obesity, T2D) and to 
ultimately deliver behavioral lifestyle interventions (e.g., time-
restricted eating). For example, when a meal is detected, this 
can be used to improve insulin therapy (e.g., reminders for 
missed insulin), or deliver behavioral information. For behav-
ioral treatment, automated meal detection could trigger inter-
vention prompts (such as reminders to eat more slowly or limit 
portion size), or queries about factors that might affect behavior 
(such as patient mood, environment, and current access to dif-
ferent foods). At a population level, reliance on SR signifi-
cantly limits the duration of data that can be collected due to 
participant burden. Instead, using automated and objective 
methods will enable us to move beyond descriptive analysis of 
meals and their timing to potentially understand the causal rela-
tionships between eating behavior and disease risk. Meal detec-
tion can provide individuals with more insight into their eating 
behavior, thus providing opportunities for personalized feed-
back on eating frequency and timing of EO.31

In the current study, we found meal detection from body-
worn sensors is feasible beyond T1D and CGM. A continuous 

glucose monitor and WM may provide complementary eating 
pattern information to self-reported methods. Notably, this is 
to our knowledge, the first use of CGM to detect meals in 
individuals with pre-diabetes and moderately controlled T2D 
and using a CGM providing 15-minute averages (rather than 
actual values every 5 minutes). Despite this significantly 
more challenging scenario, with less frequent data, the poten-
tial of confounding due to endogenous insulin, and a lack of 
data on physical activity, we found that the CGM can identify 
meals that are also identified with WM and corresponds 
strongly to SR. Furthermore, we found that both objective 
methods, WM and CGM, detect more EOs than SR, suggest-
ing that they may be able to identify omissions. WM alone 
detected the shortest eating window, while CGM identified 
the longest and therefore much earlier and later EOs. These 
latter findings suggest that there may be time-based omis-
sions in SR (e.g., late night snacking). However, we did not 
include data on sleep and physical activity, which may pro-
vide further insight into SR omissions.

Our analyses of each method using tolerance periods 
(0-120 minutes) shows interesting findings, such that at a 
tolerance level of 0 minutes, there was overlap of < 40% 
when comparing the three methods. Given that SR relies on 
participants actively logging their meals, it is likely that the 
two objective methods identify different meals that were 
either not logged or logged at a different time than the 

Table 3.  Percentage Overlap Between SR, CGM, and WM for 
Varying Tolerance Levels (in Minutes).

Tolerance SR vs. CGM SR vs. WM CGM vs. WM

0 28.4 17.4 22.6
+5 33.8 30.4 22.6
+10 36.5 30.4 22.6
+15 41.9 39.1 22.6
+30 55.4 52.2 22.6
+60 64.9 65.2 22.6
+120 79.7 73.9 22.6
−30, +120 64.9 65.2 22.6

Abbreviations: SR, self-report; WM, wrist motion; CGM, continuous 
glucose monitor.
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actual EO. As the tolerance level is increased, these meals 
are then matched to those identified automatically. For 
example, at the 30-minute tolerance period, there was over-
lap of 55% between SR and CGM of EOs detected and 52% 
overlap between SR and WM of EOs detected. Even with 
extreme tolerance periods (i.e., 2 hours ± an EO detected), 
there was not 100% overlap of EOs. Wrist motion and 
CGM overlap were the same regardless of the tolerance 
period, indicating that the objective methods are comple-
mentary and identifying distinct sets of meals rather than 
disagreeing about their timing.

The key limitation of this work is the absence of ground 
truth. While the data were collected in free-living conditions, 
which make it a realistic representation of real-world use, it 
means we do not have direct observation of EOs. We focused 
on correspondence between methods rather than benchmark-
ing CGM and WM against SR, as errors are known to exist 
in SR based on how EOs are defined by the participants or by 
researchers.32 In addition, there may have been incomplete 
days due to non-adherence to the objective measures (e.g., 
forgetting to wear the ActiGraph after charging). In this case, 
failure to capture an EO may not have been the fault of the 
device (SR or WM) but, rather, non-adherence on the part of 
the participant. Furthermore, despite our best efforts, we did 
not have data that included overlap of all three measures. 
Future work is needed to understand how all three methods 
correspond to actual EO timing.

Conclusions

We present a comparison of objective and subjective assess-
ments of EO timing in adults with pre-diabetes and obesity. 
Detecting EO may be improved with objective measures, 
such as WM and CGM. We found that while CGM has not 
previously been used in this population, it can be used to 
identify meals. WM provides real-time indication of EO tim-
ing and identifies meals that may be missed by CGM. 
Depending on tolerance level, CGM overlaps SR on 55% to 
80% of EOs, while WM overlaps SR on 52% to 65% of EOs. 
In future work, we aim to examine how CGM and WM can 
be used to provide complementary and more robust identifi-
cation of meal timing.

Abbreviations

BMI, body mass index; EO, eating occasion; CGM, continuous glu-
cose monitor; WM, wrist motion; SR, self-reported; T2D, type 2 
diabetes; PNP, personalized Nutrition Project; SBE, simulation-
based explanation.

Acknowledgements

Shirley Chen, BS, and Katherine Perdomo, BS, (all from NYU 
Grossman School of Medicine) contributed to the administrative, 
technical, and material support of the trial. The authors thank 
their study participants, without whom this study would not have 
been completed.

Declaration of Conflicting Interests

The author(s) declared the following potential conflicts of interest 
with respect to the research, authorship, and/or publication of this 
article: C.J.P. is the CEO of TAIN Nutrition, LLC. No other authors 
have conflicts of interest to disclose.

Funding

The author(s) disclosed receipt of the following financial support 
for the research, authorship, and/or publication of this article: 
Supported by grants from the American Heart Association 
7SFRN33590133 and NIH 1UL1TR001445. A.H. is supported by 
NIH award R01DK135679 and NSF award 2242812. S.K. and 
L.A.G. were supported in part by NIH awards R01LM011826, 
R01LM013308, and U54TR004279. D.E.S. receives research sup-
port from the Nevada Agricultural Experiment Station in the 
College of Agriculture, Biotechnology & Natural Resources at the 
University of Nevada, Reno.

ORCID iDs

Collin J. Popp  https://orcid.org/0000-0002-5680-8784
Louis A. Gomez  https://orcid.org/0000-0002-7712-340X
Samantha Kleinberg  https://orcid.org/0000-0001-6964-3272

Supplemental Material

Supplemental material for this article is available online.

References

	 1.	 Hales CM, Fryar CD, Carroll MD, Freedman DS, Ogden CL. 
Trends in obesity and severe obesity prevalence in US youth 
and adults by sex and age, 2007-2008 to 2015-2016. JAMA. 
2018;319:1723-1725. doi:10.1001/jama.2018.3060.

	 2.	 Schnurr TM, Jakupović H, Carrasquilla GD, et al. Obesity, 
unfavourable lifestyle and genetic risk of type 2 diabetes: 
a case-cohort study. Diabetologia. 2020;63(7):1324-1332. 
doi:10.1007/S00125-020-05140-5/TABLES/2.

	 3.	 Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, 
Al Kaabi J. Epidemiology of type 2 diabetes—global burden 
of disease and forecasted trends. J Epidemiol Glob Health. 
2020;10(1):107-111. doi:10.2991/JEGH.K.191028.001.

	 4.	 Ahola AJ, Groop PH. Barriers to self-management of diabetes. 
Diabet Med. 2013;30(4):413-420. doi:10.1111/DME.12105.

	 5.	 Xiao Q, Garaulet M, Scheer FAJL. Meal timing and obesity: 
interactions with macronutrient intake and chronotype. Int J 
Obes (Lond). 2019;43(9):1701-1711. doi:10.1038/s41366-018-
0284-x.

	 6.	 Beccuti G, Monagheddu C, Evangelista A, et al. Timing of 
food intake: sounding the alarm about metabolic impairments? 
A systematic review. Pharmacol Res. 2017;125(pt B):132-141. 
doi:10.1016/j.phrs.2017.09.005.

	 7.	 Delamater AM. Improving patient adherence. Clin Diabetes. 
2006;24(2):71-77. doi:10.2337/DIACLIN.24.2.71.

	 8.	 Sami W, Ansari T, Butt NS, Hamid MRA. Effect of diet on 
type 2 diabetes mellitus: a review. Int J Health Sci (Qassim). 
2017;11(2):65-71.

	 9.	 Varady KA. Meal frequency and timing: impact on meta-
bolic disease risk. Curr Opin Endocrinol Diabetes Obes. 
2016;23(5):379-383. doi:10.1097/MED.0000000000000280.

https://orcid.org/0000-0002-5680-8784
https://orcid.org/0000-0002-7712-340X
https://orcid.org/0000-0001-6964-3272


Popp et al	 7

	10.	 Fürtjes S, King JA, Goeke C, et al. Automatic and controlled 
processing: implications for eating behavior. Nutrients. 
2020;12(4):1097. doi:10.3390/NU12041097.

	11.	 Subar AF, Kirkpatrick SI, Mittl B, et al. The automated self-
administered 24-hour dietary recall (ASA24): a resource 
for researchers, clinicians, and educators from the National 
Cancer Institute. J Acad Nutr Diet. 2012;112(8):1134-1137. 
doi:10.1016/J.JAND.2012.04.016.

	12.	 Poslusna K, Ruprich J, de Vries JHM, Jakubikova M, Van’T 
Veer P. Misreporting of energy and micronutrient intake esti-
mated by food records and 24 hour recalls, control and adjust-
ment methods in practice. Br J Nutr. 2009;101(suppl 2):S73-S85. 
doi:10.1017/S0007114509990602.

	13.	 Cordeiro F, Epstein DA, Thomaz E, et al. Barriers and nega-
tive nudges: exploring challenges in food journaling. Proc 
SIGCHI Conf Hum Factor Comput Syst. 2015;2015:1159-1162. 
doi:10.1145/2702123.2702155.

	14.	 Kroke A, Klipstein-Grobusch K, Voss S, et al. Validation 
of a self-administered food-frequency questionnaire admin-
istered in the European Prospective Investigation into Cancer 
and Nutrition (EPIC) Study: comparison of energy, protein, 
and macronutrient intakes estimated with the doubly labeled 
water, urinary nitrogen, and repeated 24-h dietary recall 
methods. Am J Clin Nutr. 1999;70(4):439-447. doi:10.1093/
ajcn/70.4.439.

	15.	 Trijsburg L, Geelen A, Hollman PC, et al. BMI was found to 
be a consistent determinant related to misreporting of energy, 
protein and potassium intake using self-report and duplicate 
portion methods. Public Health Nutr. 2017;20(4):598-607. 
doi:10.1017/S1368980016002743.

	16.	 Askari MR, Rashid M, Sun X, et al. Detection of meals and 
physical activity events from free-living data of people with dia-
betes [published online ahead of print June 15, 2022]. J Diabetes 
Sci Technol. doi:10.1177/19322968221102183.

	17.	 Samadi S, Rashid M, Turksoy K, et al. Automatic detection and 
estimation of unannounced meals for multivariable artificial 
pancreas system. Diabetes Technol Ther. 2018;20(3):235-246. 
doi:10.1089/DIA.2017.0364.

	18.	 Dong Y, Hoover A, Scisco J, Muth E. A new method for mea-
suring meal intake in humans via automated wrist motion track-
ing. Appl Psychophysiol Biofeedback. 2012;37(3):205-215. 
doi:10.1007/s10484-012-9194-1.

	19.	 Amft O, Stäger M, Lukowicz P, Tröster G. Analysis of chewing 
sounds for dietary monitoring. In: Lecture Notes in Computer 
Science. 2005:56-72. doi:10.1007/11551201_4.

	20.	 Mirtchouk M, Lustig D, Smith A, Ching I, Zheng M, Kleinberg 
S. Recognizing eating from body-worn sensors. Proc ACM 
Interact Mob Wearable Ubiquitous Technol. 2017;1(3):1-20. 
doi:10.1145/3131894.

	21.	 Mirtchouk M, McGuire DL, Deierlein AL, Kleinberg S. 
Automated estimation of food type from body-worn audio and 
motion sensors in free-living environments. Proc Mach Learn 
Res. 2019;106:641-662.

	22.	 Scisco JL, Muth ER, Hoover AW. Examining the utility of 
a bite-count-based measure of eating activity in free-living 
human beings. J Acad Nutr Diet. 2014;114(3):464-469. 
doi:10.1016/J.JAND.2013.09.017.

	23.	 Popp CJ, St-Jules DE, Hu L, et al. The rationale and design of 
the personal diet study, a randomized clinical trial evaluating 
a personalized approach to weight loss in individuals with pre-
diabetes and early-stage type 2 diabetes. Contemp Clin Trials. 
2019;79:80-88. doi:10.1016/j.cct.2019.03.001.

	24.	 Popp CJ, Hu L, Kharmats AY, et al. Effect of a personalized diet to 
reduce postprandial glycemic response vs a low-fat diet on weight 
loss in adults with abnormal glucose metabolism and obesity: a 
randomized clinical trial. JAMA Netw Open. 2022;5(9):E2233760. 
doi:10.1001/JAMANETWORKOPEN.2022.33760.

	25.	 Sharma S, Hoover A. Top-down detection of eating episodes 
by analyzing large windows of wrist motion using a convolu-
tional neural network. Bioengineering. 2022;9:70. doi:10.3390/
BIOENGINEERING9020070.

	26.	 Dong Y, Scisco J, Wilson M, Muth E, Hoover A. Detecting peri-
ods of eating during free-living by tracking wrist motion. IEEE 
J Biomed Health Inform. 2014;18(4):1253-1260. doi:10.1109/
JBHI.2013.2282471.

	27.	 Zheng M, Ni B, Kleinberg S. Automated meal detection from 
continuous glucose monitor data through simulation and expla-
nation. J Am Med Inform Assoc. 2019;26(12):1592-1599. 
doi:10.1093/jamia/ocz159.

	28.	 Dalla Man C, Rizza RA, Cobelli C. Mixed meal simulation 
model of glucose-insulin system. Conf Proc IEEE Eng Med Biol 
Soc. 2006;2006:307-310. doi:10.1109/IEMBS.2006.260810.

	29.	 Popp CJ, Curran M, Wang C, et al. Temporal eating patterns 
and eating windows among adults with overweight or obesity. 
Nutrients. 2021;13(12):4485. doi:10.3390/NU13124485.

	30.	 Gill S, Panda S. A smartphone app reveals erratic diurnal eating 
patterns in humans that can be modulated for health benefits. Cell 
Metab. 2015;22(5):789-798. doi:10.1016/j.cmet.2015.09.005.

	31.	 van den Brink WJ, van den Broek TJ, Palmisano S, Wopereis 
S, de Hoogh IM. Digital biomarkers for personalized nutrition: 
predicting meal moments and interstitial glucose with non-
invasive, wearable technologies. Nutrients. 2022;14(21):4465. 
doi:10.3390/NU14214465.

	32.	 Leech RM, Timperio A, Livingstone KM, Worsley A, 
McNaughton SA. Temporal eating patterns: associations 
with nutrient intakes, diet quality, and measures of adipos-
ity. Am J Clin Nutr. 2017;106(4):1121-1130. doi:10.3945/
ajcn.117.156588.


